Atorvastatin augments temozolomide's efficacy in glioblastoma via prenylation-dependent inhibition of Ras signaling.
نویسندگان
چکیده
Ras signaling is often dysregulated and plays essential roles for the maintenance of glioblastoma. The proper function of Ras depends largely on the appropriate post-translational modification termed prenylation. Targeting protein prenylation therefore represents an alternative therapeutic strategy in glioblastoma. In this study, we demonstrate that prenylation inhibition by atorvastatin is active against glioblastoma. Atorvastatin alone dose-dependently inhibits growth and survival of multiple glioblastoma cell lines. Its combination with temozolomide significantly enhances temozolomide's efficacy in in vitro cultured cell system as well as in vivo xenograft glioblastoma tumor model. We further show that this is achieved by the inhibition of Ras prenylation, leading to decreased activation of Ras and its downstream signaling pathways, including Erk, rS6 and eIF4E. Our findings suggest that inhibition of Ras activity by atorvastatin effectively targets the MEK and other signaling pathways. Our study provides a fundamental evidence to repurpose atorvastatin for a potential treatment of glioblastoma.
منابع مشابه
Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy
Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on earl...
متن کاملSimvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases.
Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic end product is cholesterol. In addition to lowering circulating cholesterol, statins perturb the composition of cell membranes, resulting in disruption of lipid rafts, which function as signaling platforms i...
متن کاملTherapeutic levels of the hydroxmethylglutaryl-coenzyme A reductase inhibitor lovastatin activate ras signaling via phospholipase D2.
Hydroxmethylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) lower serum cholesterol but exhibit pleiotropic biological effects that are difficult to ascribe solely to cholesterol depletion. Here, we investigated the effect of lovastatin on protein prenylation and cell signaling. We show that high concentrations (50 μM) of lovastatin inhibit Ras, Rho, and Rap prenylation but that ...
متن کاملEvaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models.
Farnesyl:protein transferase (FPTase) inhibitors (FTIs) were originally developed as potential anticancer agents targeting the ras oncogene and are currently in clinical trials. Whereas FTIs inhibit the farnesylation of Ha-Ras, they do not completely inhibit the prenylation of Ki-Ras, the allele most frequently mutated in human cancers. Whereas farnesylation of Ki-Ras is blocked by FTIs, Ki-Ras...
متن کاملThe epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner.
Resistance to conventional adjuvant therapies (i.e., chemotherapy and radiation) has been well documented in malignant gliomas. Unlike many other tumor types, combined modality therapy involving radiation and chemotherapy has failed to appreciably enhance outcome for glioblastoma patients compared with radiation alone. In vitro, we have observed an actual antagonistic effect between sequential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 489 3 شماره
صفحات -
تاریخ انتشار 2017